Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase.
نویسندگان
چکیده
Intracellular calcium and cAMP are the 2 second messengers that regulate renin release; cAMP stimulates renin release from juxtaglomerular (JG) cells, whereas increased intracellular calcium inhibits it. We hypothesized that decreased intracellular calcium acts by activating calcium-inhibitable isoforms of adenylyl cyclase, increasing cAMP, and stimulating renin secretion. We used a primary culture of JG cells isolated from C-57/B6 mice. Cells were plated to a density of 70% in serum-free medium and incubated for 2 hours with or without 100 micromol/L of the cytosolic calcium chelator 5'5-dimethyl-1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid (BAPTA-AM) to decrease intracellular calcium. JG cell cAMP content and renin release were determined by radioimmunoassay. Intracellular cAMP content was 4.04+/-0.92 pM/mL per milligram of protein, and it increased by125+/-33% (P<0.01) with BAPTA-AM. Basal renin was 1.28+/-0.40 microg of angiotensin I per milliliter per hour per milligram of protein, and BAPTA-AM increased it by 182+/-62% (P<0.025). Western blots using an antibody that recognizes adenylyl cyclase types V and VI yielded a characteristic band of approximately 135 kDa. When primary cultures of isolated JG cells were tested for the calcium-inhibitable isoforms of adenylyl cyclase, they showed intense focal cytoplasmic staining. Cells stained for both renin and adenylyl cyclase V/VI showed colocalization in the cytoplasm, primarily on the granules. An adenylyl cyclase inhibitor (SQ 22,536) completely blocked BAPTA-AM-stimulated renin release and JG cell cAMP content. We conclude that calcium-inhibitable isoform(s) of adenylyl cyclase (types V and/or VI) exist within the JG cell. Thus, decreased intracellular calcium stimulates adenylyl cyclase, resulting in cAMP synthesis and, consequently, renin release.
منابع مشابه
Adenylyl cyclase isoform v mediates renin release from juxtaglomerular cells.
We have shown previously that decreasing intracellular calcium in the juxtaglomerular cells increases both cAMP formation and renin release. We hypothesized that this is because of an interaction between intracellular calcium and the calcium-inhibitable isoform of adenylyl cyclase, type-V. We used primary cultures of juxtaglomerular cells isolated from C-57/B6 mice at 70% to 80% confluence. Wes...
متن کاملThe calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6.
An increase in the free intracellular calcium concentration promotes exocytosis in most secretory cells. In contrast, renin release from juxtaglomerular (JG) cells is suppressed by calcium. The further downstream signaling cascades of this so called "calcium paradoxon" of renin secretion have been incompletely defined. Because cAMP is the main intracellular stimulator of renin release, we hypot...
متن کاملExpression and function of the calcium-sensing receptor in juxtaglomerular cells.
Calcium-sensing receptors sense and translate micromolar changes of extracellular calcium into changes in intracellular calcium. Renin, a component of the renin-angiotensin system, is synthesized by, stored in, and released from the juxtaglomerular cells through a cAMP-dependent pathway. Increased intracellular calcium inhibits the adenylyl cyclase isoform type V, cAMP formation, and renin rele...
متن کاملThe role of calcium in the regulation of renin secretion.
Renin is the enzyme which is the rate-limiting step in the formation of the hormone angiotensin II. Therefore, the regulation of renin secretion is critical in understanding the control of the renin-angiotensin-aldosterone system and its many biological and pathological actions. Renin is synthesized, stored in, and released from the juxtaglomerular (JG) cells of the kidney. While renin secretio...
متن کاملCalcium Suppresses Renin Exocytosis by Inhibition of Calcium-Dependent Adenylate Cyclases AC5 and AC6
An increase in the free intracellular calcium concentration promotes exocytosis in most secretory cells. In contrast, renin release from juxtaglomerular (JG) cells is suppressed by calcium. The further downstream signaling cascades of this so called “calcium paradoxon” of renin secretion have been incompletely defined. Because cAMP is the main intracellular stimulator of renin release, we hypot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2007